Identification of Mechanism-Based Inactivation in P450-Catalyzed Cyclopropanation Facilitates Engineering of Improved Enzymes.
نویسندگان
چکیده
Following the recent discovery that heme proteins can catalyze the cyclopropanation of styrenyl olefins with high efficiency and selectivity, interest in developing new enzymes for a variety of non-natural carbene transfer reactions has burgeoned. The fact that diazo compounds and other carbene precursors are known mechanism-based inhibitors of P450s, however, led us to investigate if they also interfere with this new enzyme function. We present evidence for two inactivation pathways that are operative during cytochrome P450-catalyzed cyclopropanation. Using a combination of UV-vis, mass spectrometry, and proteomic analyses, we show that the heme cofactor and several nucleophilic side chains undergo covalent modification by ethyl diazoacetate (EDA). Substitution of two of the affected residues with less-nucleophilic amino acids led to a more than twofold improvement in cyclopropanation performance (total TTN). Elucidating the inactivation pathways of heme protein-based carbene transfer catalysts should aid in the optimization of this new biocatalytic function.
منابع مشابه
Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes.
Transition metal-catalyzed transfers of carbenes, nitrenes, and oxenes are powerful methods for functionalizing C=C and C-H bonds. Nature has evolved a diverse toolbox for oxene transfers, as exemplified by the myriad monooxygenation reactions catalyzed by cytochrome P450 enzymes. The isoelectronic carbene transfer to olefins, a widely used C-C bond-forming reaction in organic synthesis, has no...
متن کاملNon-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins.
Recent work has shown that engineered variants of cytochrome P450BM3 (CYP102A1) efficiently catalyze non-natural reactions, including carbene and nitrene transfer reactions. Given the broad substrate range of natural P450 enzymes, we set out to explore if this diversity could be leveraged to generate a broad panel of new catalysts for olefin cyclopropanation (i.e., carbene transfer). Here, we t...
متن کاملMechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes.
3-Methylindole (3MI) is a pneumotoxin that requires P450-catalyzed metabolic activation (dehydrogenation), to an electrophilic methylene imine to elicit toxicity. Previous studies have shown that the human pulmonary cytochrome P450 enzyme, CYP2F1, and its goat analog, CYP2F3, catalyzed the dehydrogenation of 3MI. However, it was not known whether the dehydrogenation product could bind to active...
متن کاملMechanism-based inactivation and reversibility: is there a new trend in the inactivation of cytochrome p450 enzymes?
Recent studies with cytochrome P450 (P450) enzymes from the 2E and 2B subfamilies have shed light on what may be a new trend in the mechanism-based inactivation of P450s: reversibility. The reversible inactivation of P450-type enzymes was first reported in the mid-1990s by Dexter and Hager [Dexter AF and Hager LP (1995) J Am Chem Soc 117:817-818], who studied the transient heme N-alkylation of ...
متن کاملBeyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 138 38 شماره
صفحات -
تاریخ انتشار 2016